Prediction of partition coefficient of some 3-hydroxy pyridine-4-one derivatives using combined partial least square regression and genetic algorithm
نویسندگان
چکیده
A quantiatative structure property relationship (QSPR) treatment was used to a data set consisting of diverse 3-hydroxypyridine-4-one derivatives to relate the logarithmic function of octanol:water partition coefficients (denoted by log po/w) with theoretical molecular descriptors. Evaluation of a test set of 6 compounds with the developed partial least squares (PLS) model revealed that this model is reliable with a good predictability. Since the QSPR study was performed on the basis of theoretical descriptors calculated completely from the molecular structures, the proposed model could potentially provide useful information about the activity of the studied compounds. Various tests and criteria such as leave-one-out cross validation, leave-many-out cross validation, and also criteria suggested by Tropsha were employed to examine the predictability and robustness of the developed model.
منابع مشابه
Prediction of IC50 of 2,5-diaminobenzophenone organic derivatives using informatics-aided genetic algorithm
In the present paper, informatics-aided quantitative structure activity relationship (QSAR) models using genetic algorithm-partial least square (GA-PLS), genetic algorithm-Kernel partial least square (KPLS), and Levenberg-Marquardt artificial neural network (LM ANN) approach were constructed to access the antimalarial activity (pIC50) of 2,5-diaminobenzophenone derivatives. Comparison of errors...
متن کاملImproving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods
Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...
متن کاملImproving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods
Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...
متن کاملQSAR models to predict physico-chemical Properties of some barbiturate derivatives using molecular descriptors and genetic algorithm- multiple linear regressions
In this study the relationship between choosing appropriate descriptors by genetic algorithm to the Polarizability (POL), Molar Refractivity (MR) and Octanol/water Partition Coefficient (LogP) of barbiturates is studied. The chemical structures of the molecules were optimized using ab initio 6-31G basis set method and Polak-Ribiere algorithm with conjugated gradient within HyperChem 8.0 environ...
متن کاملA Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014